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Ordering dynamics of one-dimensional Bloch wall system and domain size distribution function
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The dynamics of domain size distribution in the ordering process for a one-dimensional classical anisotropic
XY model is studied with a reduced equation of motion for the assembly of domain sizes. The system
possesses two types of the domain wall structures, the Ne´el or Bloch walls, depending on the strength of
magnetization anisotropy. In the Ne´el wall situation the neighboring walls interact with one another in only an
attractive way. On the other hand, in the Bloch one, these walls interact in either an attractive or a repulsive
way depending on their chiralities. For the Bloch wall situation, we found that the domain size distribution is
characterized by solitonlike translational motion with a function formh„y2y(t)… and a characteristic domain
sizey(t) for the domain sizey. This is in contrast to that in the Ne´el wall situation, which can be described as
a scaling-type distribution functiong@y/ l (t)#/ l (t), as was obtained by Nagai and Kawasaki, with a certain
scaling lengthl (t). We discuss why such a solitonlike motion appears instead of the scaling-type distribution
function, show a proof for the absence of the scaling-type distribution, a qualitative estimation for the distri-
bution function in the Bloch wall situation, and an analysis for the realization probability of a specified
twistness.

DOI: 10.1103/PhysRevE.67.036112 PACS number~s!: 64.60.Cn, 75.60.Ch, 05.20.Dd
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I. INTRODUCTION

Phase ordering processes of various systems quen
from the homogeneous phase into a broken-symmetry p
have been widely studied for the last several decades@1–3#.
The dynamical behaviors in such ordering process are
scribed by the motion and the coarsening of defects, walls
other kinds of topological singularities depending on t
symmetries of their order parameters. An important aspec
such ordering process is that the statistical quantities of th
systems are scaled with a single-length scaling param
l (t), which corresponds to the mean distance between s
topological singularities or the mean diameter of dom
sizes, and diverges in the course of time. In the majority
such systems it is well accepted that the statistical quant
involving a length scale variable, e.g.,y, exhibit scale invari-
ance by use of the single-length scalingy/ l (t). Some ex-
amples exhibiting such scaling behavior are droplet gro
in binary mixture systems@4,5# and breath figures@6#. How-
ever, not all the systems undergoing such ordering proc
behave in self-similar ways, and there is a special case
obeying scaling behavior.

In this paper, we consider the statistical dynamics of
main sizes in the phase ordering process quenched from
disordered phase into the broken-symmetry phase in the
namics governed by the time-dependent Ginzgurg-Lan
~TDGL! equation without thermal noise for a classical on
dimensional ~1D! anisotropic XY-spin system. The
Ginzgurg-Landau free energy for the 1D anisotropicXY-spin
system in the broken-symmetry phase is given by

H$c,c* %5E dxF2ucu21
1

2
ucu42

g

2
~c21c* 2!1U]c

]xU
2G ,

~1.1!
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wherex is the one-dimensional coordinate,c is the complex
order parameter, andg is the strength of magnetization an
isotropy ~without loss of generalityg is chosen to be posi
tive, so that the easy axis equals the real axis!. The equation
of motion is given by the TDGL equation,

ċ~x,t !52
dH$c,c* %

dc* ~x,t !
5c2ucu2c1gc* 1

]2c

]x2
,

~1.2!

by which the free energy decreases monotonically, i
dH$c,c* %/dt<0.

It is well known that a domain wall has different stru
tures depending on the strength of anisotropy@7#: in a weak
anisotropy region (0,g,1/3) the stable domain wall is th
so-called Bloch wall, on the other hand, in a strong anis
ropy region (g.1/3), the so-called Ne´el wall is stable. Here-
after, we refer to these regimes as Bloch and Ne´el wall re-
gimes, respectively. The characteristics of the Bloch wal
its chirality, which is the degrees of freedom correspond
to the clockwise or counterclockwise rotation of the phase
the complex order parameter. In the dynamics governed
Eq. ~1.2!, the interaction of neighboring Bloch walls with th
same chirality is repulsive, while that with opposite ones
attractive, and the pair annihilates when their distance
comes sufficiently close. The repulsive interaction feature
the Bloch wall regime is in contrast to the Ne´el wall regime,
in which walls always behave in attractive ways. Reflecti
the difference in the interaction properties between walls
is expected that there are different types of statistical beh
ior for assemblies of domain sizes between both regimes

In a previous work@8#, done by the author and Fujisak
the evolution equation for the domain sizes in the Bloch w
situation was derived from the TDGL equation and the fu
damental properties of the domain wall dynamics were
vestigated; there the dynamics of domain size distribut
function~DSDF! were calculated numerically, and the DSD
©2003 The American Physical Society12-1
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for the different types of domain, classified by the combin
tion of neighboring chiralities, were found to show differe
behavior. The qualitative property of the structural factor w
also investigated. However, our numerical result was limi
to the early stage of the domain size kinetics. The pres
study deals with the long term behavior of the DSDF in t
Bloch wall situation by using both numerical and analytic
calculations.

The DSDF for the Ne´el wall situation is practically iden-
tical with that for nonconserved bistable systems. Nagai
Kawasaki ~NK!, and NK and Ogawa@9–12#, studied the
dynamics of the DSDF and the structure factor in the ord
ing process governed by the TDGL equation correspond
to the 1D Ising-spin system a couple of decade ago. T
approach was based on the following equation of motion
the sizes of domains. Letting the size of thei th domain be
yi , its growth is described by the equation

ẏi5e2yi 211e2yi 1122e2yi, ~1.3!

together with the annihilation process: when a domain s
becomes less than a cutoff size, the three adjacent dom
merge and yield a new domain. NK obtained the exact fo
of the DSDF as a scaling formg@y/ l (t)#/ l (t) from the ki-
netic equation made from Eq.~1.3!. Rutenberget al. @13#
also derived the DSDF by another simplified treatment~see
also Ref.@14#!. Due to the exponentially decaying force, th
average domain size exhibits a logarithmic growth behav
l (t); ln t, which was also observed by experiments@15–18#
for nearly 1D magnetic material.

For the 1D isotropicXY-spin model, Rutenberget al. @19#
discussed dynamical scaling for some types of order par
eter correlation functions. For the 1D anisotropicXY-spin
model, however, studies close to the present subject s
absent.

In this paper, we will show that the DSDF in the Bloc
wall regime obeys asolitonlike translational motion, and tha
the DSDF can be written in the function formh„y
2yd(t);t… @it can be written ash„y2yd(t)… in a good ap-
proximation#, where the peak positionyd(t) grows asyd(t)
; ln t and the width of the peak seems to saturate to a c
stant value. The main aim of the paper is to elucidate
origin of the solitonlike motion and to obtain the qualitativ
form of the functionh.

The paper is organized as follows. In Sec. II, we brie
introduce the evolution equation for domain sizes and sh
its qualitative properties. In Sec. III, we present our nume
cal analysis of the DSDF. In Sec. IV, the master equation
the DSDF is derived, and the realization probability f
twistness configuration is also obtained. In Sec. V, we a
lyze the single domain size distribution function. There a
two subsections. First, we will prove that the scaling-ty
solution is absent for the Bloch wall regime. In the sam
approach, as the studies by NK, we consider the kin
equation for domain size assuming the scaling form for
solution; however, it will be found that the equation leads
the divergence of the first moment, that being inconsist
with the scaling assumption. Second, with an alternative
proach incorporating the correlation effect between doma
03611
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we will obtain an Fokker-Planck-type equation and its so
tion corresponding to the solitonlike behavior. In Sec. VI, w
will discuss the differences of the DSDFs between Ne´el and
Bloch wall situations. Finally, we summarize our results
Sec. VII.

II. DYNAMICS OF BLOCH WALLS

The profile of the Bloch wall, with the center being atx
5x0, is obtained as a stationary solution of Eq.~1.2! with the
boundary conditionc(x→6`)56A11g[6X0 (g.0),
6X0 being the uniform solutions of Eq.~1.2!, i.e.,

cB~x!5pX0 tanh@~x2x0!/j#1 iqY0 sech@~x2x0!/j#,

~2.1!

whereY05A123g, j51/A2g ~the characteristic width of
wall!, p and q, respectively, take signs of either11 or
21. With the quantitypq, which is referred to as the chiral
ity of the wall, one can distinguish the rotation direction
coarse-grained spins on a wall.

The ordering process of the present system is describe
the motion of walls and the pair annihilation of neighborin
walls with an opposite chirality. As sketched in Fig. 1, let
denote thei th wall position asxi and its chirality as
(21)iqi , where the factors (21)i and qi are, respectively,
equivalent with the role ofp andq in Eq. ~2.1!. In addition,
let us introduce thei th domain sizeyi5xi 112xi and its
twistness Qi5qi 11qi , which indicates whether thei th do-
main is twisted (Qi521) or untwisted (Qi51). The num-
ber of domains runs from 1 toN(t) with N(t) being the total
number of domains at timet, and, in this paper, we impos
the periodic boundary condition in which the@ i 1N(t)#th
domain is identical to thei th domain.

The growth velocity of thei th domain size has been ap
proximately obtained as

A
dyi

dt
5Qi 11e2yi 11 /j1Qi 21e2yi 21 /j22Qie

2yi /j,

~2.2!

whereA5(12g/3)/@4A2g(123g)# @8#. Equation~2.2! has
also been derived from the dissipative 1D sine-Gord
model by Kawasaki and Ohta@20#. In the derivation of Eq.
~2.2!, we neglected the higher order powers of any expon
tial force smaller thane2yi /j. The pair annihilation of neigh-
boring walls must be taken into account if a domain s
reaches the cutoff sizeyc (;j), i.e., when thekth domain

FIG. 1. Definition of variables.
2-2
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ORDERING DYNAMICS OF ONE-DIMENSIONAL BLOCH . . . PHYSICAL REVIEW E67, 036112 ~2003!
size becomesyk5yc , three consecutive domains, (k21)th,
kth, and (k11)th with Qk51, are merged into one domai
and they are rearranged as

yk211yc1yk11→yk8 ,
~2.3!

Qk21QkQk11~5Qk21Qk11!→Qk8 .

For the case of the isolated domain, consisting of only a p
of walls, with sizey and twistnessQ, Eq. ~2.2! gives

Aẏ522Qe2y/j, ~2.4!

and its solution is obtained asy(t)5j ln(ey(0)/j22Qt/A) with
the initial sizey(0). Thus, the size of the twisted doma
(Q521) grows, while that of the untwisted domain (Q
51) shrinks and eventually disappears. From a phys
point of view, this concerns the twist energy of spins.

It is also noted that the time scale of Eq.~2.2! goes to
infinity on the transition pointg51/3 between Ne´el and
Bloch walls. In such a case, higher order terms thane2yi /j

become relevant. However, in this paper we do not deal w
such a critical situation. For later convenience, we wr
down here the dimensionless form of Eq.~2.2!, yi and t
being scaled asyi /j→yi and t/(jA)→t,

dyi

dt
5Qi 11e2yi 111Qi 21e2yi 2122Qie

2yi. ~2.5!

The fundamental properties of the domain size dynam
are as follows. In the dynamical process we have two c
servation quantities, the total domain size( i

N(t)yi5L (L, the
system size! and the total winding number

W5(
i

N(t)

~21! iqi , ~2.6!

which multiplied byp is the net phase difference betwe
boundaries. The later is the consequence of the topolog
invariance for the elimination of the untwisted domains, b
cause the elimination of thekth untwisted domain (Qk
5qkqk1151) sandwiched betweenkth and (k11)th walls
for which 2qk1qk1150 holds does not changeW. In a
statistical argument in Sec. IV B, it is also shown that t
ensemble average of the quantity( i

N(t)Qi /N(t) is a mono-
tonically decreasing quantity. By using the central limit the
rem,W is estimated asW2;N(0) for largeN(0).

In order to see the role of$Q% when many domains ar
present, let us consider the linear stability of the state
which all domains have the same sizeȳ and the same twist
nessQ. Letting dyi be the deviation fromȳ for the i th do-
main size, the linearized equation fordyi is given by

jAḋyi52Qe2 ȳ/j@dyi 111dyi 2122dyi #. ~2.7!

Equation~2.7! indicates the negative~positive! stiffness for
the caseQ51 (Q521). The uniform state is therefore un
stable~stable! for Q51 (Q521). This suggests that do
main sizes develop their size fluctuation by an attract
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force in the caseQ51, or they retain equal intervals amon
walls by a repulsive one of the caseQ521. Figure 2 shows
the temporal evolution of consecutive domain sizes, wh
are generated by Eq.~2.5! for the randomly distributed initial
sizes by keeping their average equal to 4.0 and initial tw
ness with an equal probability for each state. Details of
method of calculation are explained in Sec. III. Each sn
shot shows the configuration of consecutive domain si
yi(t) ( i 51, . . . ,400) at each of the three successive times
order from top to bottom. These snapshots show the de
opment of clusters, where each of the clusters consist
equal size domains and increases its population by absor
more domains, being ofQ521, arising from the annihila-
tion of untwisted domains, at both sides. This behavior
well explained by the linear stability argument mention
above.

III. NUMERICAL ANALYSIS

The direct integration of Eq.~2.5! by the usual Runge-
Kutta methods spends too much time to complete the en
kinetic stage, because the calculation speed becomes slo
a logarithmic time scale. For the purpose of efficient integ
tion, the present study uses thevariable time stepalgorithm.
Equation~2.5! is discretized as

yi8~t1Dt!5yi8~t!

1@Qi 11e2yi 118 1Qi 21e2yi 218 22Qie
2yi8#Dt,

~3.1!

whereyi8 is yi8[yi2ymin(t), i.e., the relative size measure
from the minimum domain sizeymin(t), andDt is the thick-
ness of time defined byDt[Dteymin(t). The unit of time is
varied in accordance with the fastest process, and the

FIG. 2. The evolution of domain sizes$yi(t)% ( i
51, . . . ,400). The vertical and horizontal axes indicate the len
of the domain size and the array index of domains, respectiv
Each snapshot shows the configuration of consecutive domain
at each of the different timest51.3, t54.03105, and t
57.931014, in order from top to bottom.
2-3
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HIROKI TUTU PHYSICAL REVIEW E 67, 036112 ~2003!
steps spent by the process until the collapse of the fas
domain are proportional to its size, which is simultaneou
the smallest domain sizeymin(t). The whole algorithm is
summarized in the following statements:~i! find the domain
being the smallest size@yk(t)5ymin(t)# with the positive
twistness (Qk51), ~ii ! guess the time steps spent until t
occurrence of the next annihilation event, and do a numer
integration for those steps,~iii ! if the annihilation event oc-
curs@yk(t),yc#, return to~i! and add the time spent in tha
process to the real timet, or else go to~ii !. In the present
study, the numerical integration between successive ann
lation events was done by the Runge-Kutta-Gill method.

The initial distributions for our calculations were prepar
as follows: The initial sizes of domains$y1 ,y2 , . . . ,yN0

%

were given randomly by the constraintȳ(0)54 ~bar denotes

FIG. 3. Temporal evolution off (y;t). The vertical and horizon-
tal axes indicate the values off (y;t) and domain sizey, respec-
tively. Different kinds of symbols correspond to snapshots at dif
ent times, the correspondences being indicated within the fig
The time intervals between successive snapshots are separat
an approximately logarithmic time order, so the snapshots
equally separated.
03611
st
y
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the mean of all elements!, and the initial values of twistnes
$Q1 ,Q2 , . . . ,QN0

% were given randomly with an equa

probability for each state, whereQ̄;0 should be satisfied
The other parameters were chosen as follows: the in
number of domains,N(0)[N05214, the number of samples
for statistical average,Ns5204, the cutoff size for domain
sizes,yc51, the time increment for the numerical integr
tion, Dt50.01.

Figure 3 shows the temporal evolution of the DSDF,

f ~y;t !5K 1

N~ t ! (
i

N(t)

d„y2yi~ t !…L , ~3.2!

where ^•••&[(1/Ns)(s
Ns
••• denotes the average of th

samples of different initial distributions with the samp
numberNs , andd(•••) is the Dirac delta function. The time
evolution of f (y;t) is represented by the successively plott
curves consisting of different kinds of symbols, the kin
corresponding to different times. The initial distributio
function takes an exponential formf (y;0)} exp@2(y
2yc)/(ȳ2yc)#, which is the manifestation that shows that t
assembly of the initial wall positions obeys Poissonian s
tistics. After the early collapse of short size domains, one
observe a translational motion of the DSDF, i.e., the posit
of the peak temporally moves rightward in a logarithm
time scale; ln t, and the height has a tendency to satur
into a constant value.

More detailed information can be obtained with the jo
distribution function fory andQ,

f ~y,Q;t !5K 1

N~ t ! (
i

N(t)

d„y2yi~ t !…dQ,Qi (t)L , ~3.3!

where dQ,Qi
is the Kronecker’s delta. Figure 4~a! exhibits

that f (y,1;t) decreases its peak height and broadens its p
width. This behavior may bring the expectation thatf (y,1;t)
has the same property as in the Ne´el wall situation, i.e., the
scaling property. However, this expectation is not complet

-
e.

by
re
e
FIG. 4. Temporal evolution off (y,Q;t). Figures~a! and~b!, respectively, showf (y,1;t) and f (y,21;t). The times of snapshots and th
corresponding kinds of symbols are the same as those in Fig. 3.
2-4
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FIG. 5. ~a! Temporal evolution off D(y;t), and~b! its profiles for different times on the framey2yd(t). The times of snapshots and th
corresponding kinds of symbols are the same as those in Fig. 3.
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realized, which will be shown in a later numerical~see the
explanation below Fig. 6! and theoretical analysis~see Sec.
V A !. Figure 4~b! indicates that the drift motion observed
Fig. 3 is owing to the behavior off (y,21;t). This implies
that the DSDF f (y,21;t) can be written asf (y,21;t)
;h„y2yd(t)… with yd(t) corresponding to the position o
the peak andh(z) being a function independent of time.

For the purpose of helping the present analysis, let
suppose that the DSDF~3.3! can be divided as

f ~y,Q;t !5 f ,~y,Q;t !1 f .~y,Q;t !, ~3.4!

where the superscripts, and ., respectively, signify the
regionsy,y* (t) andy.y* (t) with a sizey* (t) separating
behaviors of the DSDF. For the regiony.y* (t), we assume
that the domain size kinetics are governed by annihilat
and creation process among domains, Eq.~2.3!, and which
break aQ-relevent memory effect among domains. Accor
03611
s

n

-

ingly, we can assume the distribution functionf .(y,Q;t) for
eachQ not to depend onQ, i.e., f .(y,Q;t).g(y;t). Then,
we have

f ~y,Q;t !5 f ,~y,Q;t !1g~y;t !. ~3.5!

We also assume that the dynamical evolution generated
Eq. ~2.2! brings aQ-dependent effect for the domain siz
kinetics in the regiony,y* (t), where twisted domains (Q
521) tend to correlate in their neighboring sizes, wh
untwisted domains (Q51) disperse their sizes. This als
leads to a sharpening (Q521) and broadening (Q51) of
each DSDF in that region. Hence, the function

f D~y;t !5 f ~y,21;t !2 f ~y,1;t !5 f ,~y,21;t !2 f ,~y,1;t !

~3.6!

extracts theQ-dependent part from both distributions.
Figure 5~a! shows the time evolution off D(y;t). The
last
e same
FIG. 6. ~a! The result of the scaling~3.7! for f (y,1;t), and~b! its linear-log plot, where the vertical axis is the logarithmic scale. The
two pieces of data fort56.731012,5.631015 used in the previous figures are dropped to maintain clarity, but the rest of the data are th
as those in Fig. 3.
2-5
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HIROKI TUTU PHYSICAL REVIEW E 67, 036112 ~2003!
function f D(y;t) obviously exhibits translational motion, i
which the location of the peak moves with an equal spee
a logarithmic time scale, i.e.,yd(t); ln t. Figure 5~b! shows
the evolution of f D„y2yd(t)… on the moving framey
2yd(t). The probability mass aroundy.yd(t) corresponds
to the population of the domain sizes that compose the c
ters as seen in Fig. 2. Reflecting the formation of the clust
the total mass off D„y2yd(t)… increases from zero an
gradually saturates to a constant, where most of the mas
f D(y;t) comes fromf (y,21;t), i.e., the DSDF for the smal
size region,y,y* (t), is dominated byf ,(y,21;t) @ f ,(y,
21;t)@ f ,(y,1;t)#.

Another point of interest is what kind of statistical beha
ior describesg(y;t). In order to see that, we have attempt
the scaling form

f ~y,1;t !;g„y/ ȳ~ t !…/ ȳ~ t ! ~3.7!

to f (y,1;t) in Fig. 6, where we usef (y,1;t) instead of
g(y;t), and Eq.~3.7! is the same type scaling as the Ne´el
wall situation. For the scaling length, we have used the m
domain sizeȳ(t)5L/^N(t)&. Figure 6~a! shows the result of
the scaling~3.7! for f (y,1;t). Obviously in the small size
region the scaling assumption~3.7! is broken. Figure 6~b! is
the linear-log plot of Fig. 6~a!. f (y,1;t) has the exponentially
decaying part written as;e21.2y/ ȳ(t)/ ȳ(t) for the large size
region y/ ȳ(t).zc(t), wherezc(t).2.0 for the last data in
Fig. 6~b!, andzc(t) gradually increases in the course of tim
These results imply thatf (y,1;t) is no longer written in an
entire scaling form, instead, it is considered that
exponential-type scaling form with the characteristic s
ȳ(t) for f (y,1;t) transiently appears for the large size regi
and gradually collapses away from the side of the small s
region. The intuitive explanation for that is as follows. Let
consider the arrangements ofQ for three consecutive do
mains to be able to create a positive-Q domain after the
collapse of the middle domain. Then, such arrangements
found to be (1,1,1) and (21,1,21), where (Q1 ,Q2 ,Q3)
denotes the arrangement of twistness for three consec
domains. Similarly, let (y1 ,yc ,y2) be the configuration of
the domain sizes just before collapse. When either ofy1 or
y2 is sufficiently large, the resultant domain may bring
memory or correlation effect relevant toQ since the dynam-
ics of larger domains is governed by the annihilation proc
~2.3!, which breaks the dynamical memory or correlati
effect. On the other hand, when bothy1 andy2 are small, the
annihilation event (21,1,21)→1 can accumulate the corre
lation effect among domain sizes tof (y,1;t), and the event
(1,1,1)→1 elevates the correlation effect toward the larg
size region. This is because the dynamics correspondin
the DSDF f ,(y,21;t) condenses the clusters in which a
domains have same twistness and are equally sized ar
the characteristic sizeyd(t), and the form off ,(y,21;t) is
not a scaling form but the solitionlike form,h„y2yd(t)…,
whose width is almost constant. As a consequence,
exponential-type scaling form forg(y;t), which is settled
through a large number of annihilation events in early sta
03611
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and retained in a large size region by subsequent annihila
events, collapses away from the side of the small size reg

The results in this section also suggest that in the
anisotropicXY-spin system, the DSDF changes its prope
from a scaling form to a solitonlike translational motion at
certain critical strength of anisotropy (g51/3), as the
strength of anisotropy diminishes.

Figure 7 shows the temporal behavior of some charac
istic sizes: the growth of the peak location off D(y;t), yd(t),
that of the mean domain size averaged over all doma
ȳ(t), and that of the partially averaged sizes over the
twisted domains,ȳ1(t), and the twisted domains,ȳ2(t), are
respectively plotted against time. These clearly indicate
logarithmic time dependence;C ln t, where the coefficient
C for each quantity is classified by two characteristic nu
bers as yd(t),ȳ(t),ȳ2(t);0.93 lnt and ȳ1(t);1.92 lnt.
There is a notable difference betweenȳ1(t) and ȳ2(t), be-
ing expressed asȳ2(t).yd(t) and ȳ1(t).2.0yd(t). The
former relation onȳ2(t) implies that the growth of the mea
size for the twisted domains is governed by the motion of
peak location off ,(y,21;t). The latter relation can be in
tuitively explained as follows. Revisiting the above
mentioned argument for the creation of the untwisted
mains,Q51, in the small size region, the three consecut
domains with their arrangement of twistness (21,1,21)
dominate the creation of untwisted domains rather than
with (1,1,1) in the late stage. Hence, we can roughly e
mate the resultant size of domains withQ51 as ;yd(t)
1yc1yd(t);2yd(t). Again this implies that the domain
size statistics are governed by the dynamics of twisted
mains.

IV. MASTER EQUATION

In this section, we formulate the master equation for
DSDF. In Sec. IV A, we introduce then-body distribution
function, and apply some simplifications for further develo

FIG. 7. Growth of the peak location off D(y;t), yd(t), the mean

domain sizeȳ(t), and the mean domain size over the samples

untwisted domains,ȳ1(t), and twisted domains,ȳ2(t), are, respec-
tively, plotted with different kinds of lines. The corresponden
between the kinds of lines and the quantities is indicated within
figure.
2-6
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ment, where some of those procedures are the same as
in the studies by NK@10,11#. In Sec. IV B, we calculate the
probability for the realization of a specified twistness
rangement forn-consecutive domains. In Sec. IV C, we d
rive a reduced master equation for single domain size di
bution function. The detailed analysis of the single dom
size distribution function will be done in Sec. V.

A. n-body distribution function

Let us consider the temporal evolution of the assembly
domains described by Eqs.~2.5! and~2.3! under the periodic
boundary conditionyi 1N(t)5yi and Qi 1N(t)5Qi , and the
initial condition $y1 ,y2 , . . . ,yN0

%[$y%1
N0 and

$Q1 ,Q2 , . . . ,QN0
%[$Q%1

N0. As shown in Sec. II, for a given
initial condition, the system has the conserved quantity,
total winding numberW, defined by Eq.~2.6!. Hence, the
final distribution function att5` is written as

f ~y,Q;`!5H d~y2L/uWu!dQ,21 for uWuÞ0

d~y2L !dQ,21 for uWu50,

~4.1!

whereL is the system size. This expression indicates dep
dence on the initial configuration through the quantityW. In
the present study, we are concerned with the long term
havior of the DSDF without dependence on the initial co
figuration and system size, and assume that the temp
evolution of the DSDF is parametrized with only a sing
length scale being independent of the initial conditions.
well as the dynamical scaling behavior of the Ne´el wall sys-
tem, the solitonlike translational motion,h„y2yd(t)…, can be
characterized with the single sizeyd(t). Pointing to both
scaling and solitonlike behavior, hereafter, we use the t
single-length scale behavior, which means that both DSDF
show similarities of domain size distribution through t
change of single-length scale. Let us assume that s
single-length scale behavior is achieved by taking the a
age over the possible initial configurations for largeN0 andL
systems, also followed by taking the limitL→` and N0
→` with the constraintN0 /L being constant. In this limit
the DSDF does not reach the final state~4.1! since^L/uWu&
→`@O(AN0)#, and let us assume convergence to an uni
DSDF in this limit without proof.

The probability density function~PDF! for the state vari-
ables$y%1

n and$Q%1
n is defined as

f n~y1 ,Q1 ; . . . ;yn ,Qn ;t !

[ f n~$y,Q%1
n ;t !

5K )
k51

n

d„yk2yk~ t !…dQk ,Qk(t)L , ~4.2!

where the definition range ofyi ( i 51, . . . ,n) is restricted to
yi>yc , and ^•••& indicates the average over the possib
initial configurations with equal weight, which is formall
written as
03611
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^•••&[ lim
N0 ,L→`

(
$Q%

1

N0

22N0E
yc

`

d$y%1
N0dS (

l 51

n

yl2L D •••,

~4.3!

with the constraintN0 /L being constant. For simplicity, we
use the notations,

(
$Q%1

n
[(

Q1
(
Q2

•••(
Qn

, ~4.4!

E
yc

`

d$y%1
n[E

yc

`

dy1E
yc

`

dy2•••E
yc

`

dyn , ~4.5!

where (Qk
denotes the summation overQk561. On the

notation in Eq.~4.2!, when we need to emphasize speci
variable~s!, we represent then-body PDF as

f n~y1 ,Q1 ; . . . ;yk ,Qk ; . . . ;yn ,Qn ;t !

[ f n~$y,Q%1
k21 ;yk ,Qk ;$y,Q%k11

n ;t !. ~4.6!

The n- and (n21)-body functions satisfy the relation

(
$Qn%

E
yc

`

dynf n~$y,Q%1
n ;t !5 f n21~$y,Q%1

n21 ;t !, ~4.7!

and the normalization condition is

(
$Q1

n%
E

yc

`

d$y%1
nf n~$y,Q%1

n ;t !51.

Although these relationships are not held for the finiteN0
system, they will be practically satisfied in a sufficient
largeN0 system.

The master equation for then-body distribution function
is provided in the form

]

]t
f n~$y,Q%1

n ;t !52 (
k51

n
]

]yk
Jn

k~$y,Q%1
n ;t !

1 (
k51

n

Kn
k~$y,Q%1

n ;t !. ~4.8!

Here, the termJn
k($y,Q%1

n ;t) represents thekth component of
the probability density flux in the space ofn-consecutive
variables$y,Q%1

n , whose trajectory in the phase space is ge
erated by Eq.~2.5!. The termKn

k($y,Q%1
n ;t) concerns the

annihilation process~2.3!, and means the production rate
the n-consecutive domains through the annihilation of t
kth domain. Those expressions are given as

Jn
k~$y,Q%1

n ;t !

5 (
Q0 ,Qn11

E
yc

`

d$y0 ,yn11%

3v~yk21 ,Qk21 ;yk ,Qk ;yk11 ,Qk11!

3 f n12~$y,Q%0
n11 ;t !, ~4.9!
2-7
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Kn
k~$y,Q%1

n ;t !

52 (
Q8Q9

E
yc

`

d$y8,y9%dQk ,Q8Q9d~y81yc1y92yk!

3v~y8,Q8;yc,1;y9,Q9!

3 f n12~$y,Q%1
k21 ;y8,Q8;yc,1;y9,Q9;$y,Q%k11

n ;t !,

~4.10!

where

v~yi 21 ,Qi 21 ;yi ,Qi ;yi 11 ,Qi 11!

5Qi 11e2yi 111Qi 21e2yi 2122Qie
2yi ~4.11!

and *yc

` d$x,y%[*yc

` dx*yc

` dy. The boundary conditions fo

the n-body function are given as

f n~$y,Q%1
k21 ;yc ,21;$y,Q%k11

n ;t !50,

f n~$y,Q%1
k21 ;yc,1;$y,Q%k11

n ;t !Þ0, ~4.12!

f n~$y,Q%1
k21 ;`,Qk ;$y,Q%k11

n ;t !50,

for any kth domain (1<k<n). The first condition is due to
the repulsive nature of the motion of neighboring dom
walls with Q521, Eq.~2.4!, and the second reflects that th
probability density flux for untwisted domains does not va
ish at the boundaryy5yc due to the presence of the annih
lation process.

We can reduce Eq.~4.10! by two approximations into a
more simplified form. ~i! The annihilation speed
2v(y8,Q8;yc,1;y9,Q9) is always positive fory8,y9.yc ,
and its main part is dominated by the term 2e2yc, the speed
of solely collapsing domain. Hence, this allows us the s
plification

v~y8,Q8;yc,1;y9,Q9!'22e2yc. ~4.13!

~ii ! The correlation effect among three consecutive dom
sizes, (yk21 ,yc ,yk11), just before an annihilation event i
which the middle of three domains collapses, does not
nificantly remain after the event. This allows the followin
approximation:

f n~$y,Q%1
k21 ;yc ,Qk ;$y,Q%k11

n ;t !

' f 1~yc,1;t ! f k21~$y,Q%1
k21 ;t ! f n2k~$y,Q%k11

n ;t !dQk,1 ,

~4.14!

for the kth collapsing domain (1<k<n). This assumption
regards the motion of the domains just before reaching
cutoff size as almost independent of the influence of the
jacent domains. Based on these approximations, Eq.~4.10!
becomes
03611
-
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Kn
k~$y,Q%1

n ;t !

'2e2ycf 1~yc,1;t ! (
Q8Q9

E
yc

`

d$y8,y9%dQk ,Q8Q9

3d~y81yc1y92yk! f k~$y,Q%1
k21 ;y8,Q8;t !

3 f n2k11~y9,Q9;$y,Q%k11
n ;t !. ~4.15!

Collecting these results, we get the starting Eq.~4.8! with
Eqs.~4.9! and ~4.15! for the analysis of the DSDF.

B. Realization probability for a specified twistness arrangement

This section deals with the realization probability for
specified twistness arrangement$Q%1

n at time t. The master
equation for the realization probabilityf n($Q%1

n ;t) is ob-
tained by integrating variables$y1 , . . . ,yn% on both sides of
the master Eq.~4.8! with Eqs.~4.9! and ~4.15!:

]

]t
f n~$Q%1

n ;t!

52 (
k51

n

f k21~$Q%1
k21 ;t! f n2k~$Q%k11

n ;t!dQk,1

1 (
k51

n

(
Q8,Q9

dQk ,Q8Q9 f k~$Q%1
k21 ,Q8;t!

3 f n2k11~Q9,$Q%k11
n ;t!, ~4.16!

where the time variablet is changed intot by using

] tt52e2ycf ~yc,1!. ~4.17!

For the casen51, Eq. ~4.16! gives

]t f 1~1;t!5211 f 1
2~1;t!1 f 1

2~21;t!,
~4.18!

]t f 1~21;t!52 f 1~1;t! f 1~21;t!,

with the normalization conditionf 1(1;t)1 f 1(21;t)51.
For the case of the symmetric initial conditionf 1(Q1 ;0)
51/2, which was used for the present numerical analy
Eq. ~4.18! has the solution

f 1~Q1 ;t!5
e2tQ1

et1e2t
. ~4.19!

This result indicates that the number of negative-~positive!
Q domains monotonically increases~decreases!, and also
that ^Q&52tanh(t).

The solution for a generaln case can be obtained by re
cursive procedure presented in Appendix A. For the symm
ric initial condition f n($Q%1

n ;0)51/2n, the generalnth prob-
ability function is found to be
2-8
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f n($Q%1
n ;t)5

expS 2t(
i 51

n

Qi D
(
$Q%n

expS 2t(
i 51

n

Qi D . ~4.20!

This proof is shown in Appendix A. This result is then-times
product of the single realization probability. The numeric
check of the result~4.19! is shown in the following section

C. Single domain size distribution function

The single domain size distribution functionf 1(y,Q;t) is
given by integrating the variables$y%2

n and$Q%2
n in Eq. ~4.8!

with Eqs.~4.9! and ~4.15!, i.e.,

]

]t
f 1~y,Q;t !52

]

]y
J1~y,Q;t !1K1~y,Q;t !, ~4.21!

where

J1~y,Q;t !5 (
Q8,Q9

E
yc

`

d$y8,y9%v~y8,Q8;y,Q;y9,Q9!

3 f 3~y8,Q8;y,Q;y9,Q9;t !,

522Qe2yf 1~y,Q;t !

12(
Q8

E
yc

`

dy8Q8e2y8 f 2~y8,Q8;y,Q;t !, ~4.22!

K1~y,Q;t !52e2ycf 1~yc,1;t ! (
Q8,Q9

E
yc

`

d$y8,y9%dQ,Q8Q9

3d~y81yc1y92y!

3 f 1~y8,Q8;t ! f 1~y9,Q9;t !. ~4.23!

By using this equation, the evolution of the mean dom
size, ȳ(t)5(Q*yc

` dyy f1(y,Q;t), is estimated as

ẏ̄~ t !.4e2ycf 1~yc,1;t !ȳ~ t !12yc^Qe2y& f 1~yc,1;t !

.4e2ycf 1~yc,1;t !ȳ~ t !, ~4.24!

where the second term in the first line is neglected si
e2yc@u^Qe2y&u for ȳ(t)@yc . Eqs.~4.17! and~4.24! relatet

and ȳ(t) as t. 1
2 ln@ȳ(t)/ȳ(0)#. In term of ȳ(t), Eq. ~4.19!

reads

f 1„Q; ȳ~ t !…55
ȳ~0!

ȳ~ t !1 ȳ~0!
~Q51!

ȳ~ t !

ȳ~ t !1 ȳ~0!
~Q521!.

~4.25!

Figure 8 shows a comparison between the numerical re
for the realization probability for the twistness of a sing
03611
l

n

e

ult

domain and the analytical result Eq.~4.25! with ȳ(0)54.0,
which is fixed over the present numerical calculations. Wh
ȳ(0) was treated as a fitting parameter, the best fitting va
for ȳ(0) by nonlinear curve fitting, was about 4.7. Fro
these results, we can confirm that both results are in g
agreement.

V. ANALYSIS OF DSDF FOR SINGLE DOMAIN

First, we carry out the a mean field analysis of the DS
based on the dynamical scaling hypothesis. However,
approach will fail with an inconsistency with the hypothes
As a result, this gives a proof for the absence of a scali
type distribution in the Bloch wall regime, and indicates t
necessity for incorporating the correlation effect between
main sizes. Next, we develop the analysis by incorporat
the correlation between neighboring domain sizes, and s
the qualitative solution for the solitonlike translation
motion.

A. Mean field analysis

By using the factorization approximation, in which th
joint PDF for two consecutive domains being replaced w

f 2~y1 ,Q1 ;y2 ,Q2 ;t !. f 1~y1 ,Q1 ;t ! f 1~y2 ,Q2 ;t !, ~5.1!

and applying it into the drift term~4.22! in Eq. ~4.21!, we get

]

]t
f ~y,Q;t !52

]

]y
@2m~ t !22Qe2y# f ~y,Q;t !

1
ẏ̄~ t !

ȳ~ t !
K~y,Q;t !, ~5.2!

FIG. 8. Comparison between the numerical result for the re
ization probability for the twistness of a single domain and an a
lytical one, Eq.~4.25!. Horizontal and vertical axes, respectivel

indicate the average domain size andf 1„Q; ȳ(t)…. Filled (Q
521) and empty (Q51) circles correspond to the numerical r
sults. Solid (Q521) and broken (Q51) lines represent Eq.~4.25!

with ȳ(0)54.0.
2-9
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where f (y,Q;t)[ f 1(y,Q;t) and m(t)[^Qe2y&. From
Eq. ~4.25!, ^Q&,0 holds, then,m(t) is negative except the
early stage. The termK(y,Q;t) in Eq. ~5.2! is the rewrite of
Eq. ~4.23! by using Eq. ~4.24!, i.e., K1(y,Q;t)

5@ ẏ̄(t)/ ȳ(t)#K(y,Q;t).
Let us first consider the Eq.~5.2! without the reaction

term K(y,Q;t),

]

]t
f 0~y,Q;t !52

]

]y
V~y,Q;t ! f 0~y,Q;t !. ~5.3!

We have here defined the mean field force

V~y,Q;t !522e2yD(t)22Qe2y, ~5.4!

wherem(t) in Eq. ~5.2! is replaced with2e2yD(t) by intro-
ducing the sizeyD(t) corresponding to the vanishing point o
the mean field force forQ521, i.e.,V„yD(t),21;t…50. It
is expected thatyD(t) is close toyd(t) @yd(t) is defined in
Sec. III#.
e

th

03611
The solution for a given initial distributionf 0(y,Q;0)
can be obtained by solving the equation of moti
ẏ5V(y,Q;t). Let y(h,Q;t) be its solution trajectory at time
t with the initial conditiony(h,Q;0)5h, then let us assume
the form ofy(h,Q;t) as

y~h,Q;t !5 ln@eh2QB~ t !#2A~ t !, ~5.5!

where A(t) and B(t) must satisfy the equationsȦ(t)
52e2yD(t) and Ḃ(t)52eA(t) with the initial conditions
A(0)5B(0)50. The inverse of the solution~5.5!, i.e., the
trajectory starting withy at t50 and ending withh after the
time t, becomes

h~y,Q;t !5 ln@QB~ t !1ey1A(t)#. ~5.6!

By using Eq.~5.6!, the solution of Eq.~5.3! is written in the
form
f 0~y,Q;t !55
1

11B~ t !e2y2A(t)
f 0
„h~y,1;t !,1;0…u~y2yc! ~Q51!

1

12B~ t !e2y2A(t)
f 0
„h~y,21;t !,21;0…u„y2yc~ t !… ~Q521!,

~5.7!
-
e

rm
o-

e
he
ws

of
with yc(t)5 ln@eyc1B(t)#2A(t).
Here, the technical details of Eq.~5.7! are as follows. The

expressions forA(t) andB(t) are obtained by supposing th
relation A(t)5a@yD(t)2yD(0)# with a constanta.0, so
that it leads to the lnt- behavior foryD(t), i.e.,

yD~ t !5 lnF 2

a
t1eyD(0)G , ~5.8!

A~ t !5a„yD~ t !2yD~0!…5a lnF11
2

a
e2yD(0)t G , ~5.9!

B~ t !5
aeyD(0)

11a F S 11
2

a
e2yD(0)t D 11a

21G
5

aeyD(0)

11a
@e(11a)/aA(t)21#. ~5.10!

The step-function factors forQ561 in Eq. ~5.7! represent
the definition ranges ofy for the functionf 0(y,61;t), those
are determined by the following argument. The ranges of
variablesy and h are restricted toy,h>yc . In addition to
these, from Eq. ~5.6!, h(y,Q;t)>max†ln@QB(t)
1eyc1A(t)#,yc‡ must be also satisfied, where max@x,y# means
the maximum of the set$x,y%. This yields
e

h>H ln@B~ t !1eyc1A(t)# ~Q51!

yc ~Q521!.
~5.11!

Therefore, from Eq.~5.5!, the regions fory are limited toy
>yc (Q51) andy>yc(t) (Q521) as shown in Eq.~5.7!.
For large yD(t), yc(t) is estimated asyc(t);yD(t)
1 ln@a/(11a)# from Eqs.~5.9! and ~5.10!.

In Eq. ~5.7! the solution forQ51 takes the asymptotic
form

f 0~y,1;t !.H f 0~y1A~ t !,1;0! for y.yc~ t !

ey2yc(t) f 0
„ln B~ t !,1;0… for y,yc~ t !,

~5.12!

for the situationyc(t)@yc . The prefactor exhibits a step
function-like form, which exponentially decays toward th
regiony,yc(t) with its decay width of order one, andyc(t)
is regarded as an effective cutoff size. The asymptotic fo
~5.12! indicates that the probability mass for untwisted d
main sizes flows out of the effective regiony.yc(t). Simi-
larly, the solution forQ521 takes the formf 0

„y1A(t),
21;0… for y@yc(t) and B(t)e2ycf 0(yc ,21;0) at y
5yc(t), where B(t);t11a. These forms indicate that th
probability mass for the twisted domain sizes flows into t
sizey5yc(t) and accumulates. The present analysis follo
the treatment in Ref.@10# for the Néel wall situation. How-
ever, the behavior shown here is quite different from that
2-10
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the Néel wall situation, in which the expression correspon
ing to f 0

„y1A(t),1;0… of the present case was likef 0
„y

2A(t),1;0…. The difference here is owing to the negati
sign of m(t) in Eq. ~5.2!, and it is also critical for the long
term behavior of the DSDF between both systems.

Now, taking the reaction termK(y,Q;t) into account, we
assume the form of the solution for Eq.~5.2! as

f ~y,Q;t !5
]h~y,Q;t !

]y
G„h~y,Q;t !,Q;t… ~5.13!

with a function G, which is a generalization of Eq.~5.7!.
Substituting this into Eq.~5.2!, we obtain

]

]t
G~h,Q;t !5

ẏ̄~ t !

ȳ~ t !

]y~h,Q;t !

]h
K„y~h,Q;t !,Q;t…,

~5.14!

whereh is changed to be an independent variable with
map ~5.5! :h°y, andK„y(h,Q;t),Q;t… becomes

1

2 (
Q8

E
hc

Q8(t)

`

dh8E
hc

QQ8(t)

`

dh9d„y~h8,Q8;t !1yc

1y~h9,QQ8;t !2y~h,Q;t !…

3G~h8,Q8;t !G~h9,QQ8;t !, ~5.15!

where the lower cutoff of the integral is denoted ashc
Q(t). In

the present treatment,hc
Q(t)5h(yc ,Q;t) @the definition

range ofh is shown in Eq.~5.11!#. However, that value ha
been obtained free of the annihilation process and correla
effects, thus it may differ from values in more advanc
treatments.

With the Laplace transformation

G̃~p,Q;t !5E
hc

Q(t)

`

dhe2phG~h,Q;t !, ~5.16!

Eq. ~5.14! is rewritten as

]

]t
G̃~p,Q;t !1ḣc

Q~ t !e2phc
Q(t)G„hc

Q~ t !,Q;t…

5
1

2

ẏ̄~ t !

ȳ~ t !
(
Q8

E
hc

Q8(t)

`

dh8E
hc

QQ8(t)

`

dh9

3e2pY(h8,Q8;h9,QQ8;t)G~h8,Q8;t !G~h9,QQ8;t !,

~5.17!

where

Y~h8,Q8;h9,QQ8;t !

5h@y~h8,Q8;t !1yc1y~h9,QQ8;t !,Q;t#

5h81h92A~ t !1DY~h8,Q8;h9,QQ8;t !,

~5.18!
03611
-

e

on

eDY(h8,Q8;h9,QQ8;t)5eyc@12Q8B~e2h81Qe2h9!

1QB~B1eA2yc!e2h82h9#. ~5.19!

The term DY in Eq. ~5.18! is negligible for h8,h9
@h(yc,1;t), but it can be relevant around the lower cutoff
the integral. ForQ521 and Q851, at the cutoffsh8
5h(yc,1;t) and h95h(yc ,21;t)5yc , the factor~5.19! is
estimated as

eycF12
B

B1eA1yc
1Be2yc2

B~B1eA2yc!e2yc

B1eA1yc
G;0,

for large t. Similarly, for Q51 and Q851, at the cutoff
h8,h95h(yc,1;t) the factor~5.19! vanishes, and forQ51
and Q8521, at the cutoffh8,h95yc the factor~5.19! di-
verges for larget. Now, we are concerned with the proble
whether the functionG(h,Q;t) is written in a dynamical
scaling form onh with a length scale parameter or not.
order to examine that, we discuss Eq.~5.14! or Eq. ~5.17!
under the assumption that Eq.~5.14! has the scaling range in
which G(h,Q;t) obeys the dynamical scaling behavior
written in the formG(h,Q;t);g@h/h̄Q(t),Q;t#/h̄Q(t) with
a scaling lengthh̄Q(t). For this point of view, the contribu-
tion from the factor~5.19! presented above already brea
the scaling behavior since the terms in Eq.~5.19! are not
written in scaling form. For this situation, in order to extra
the scaling region, we introduce an effective cutoff as writt
in hc

Q(t)}A(t) @}h̄Q(t)# so that the factor~5.19! can be
regarded to have an order of unity. By replacing the cuto
we put G(h,Q;t) as G(h,Q;t)5G8(h,Q;t)u„h2hc

Q(t)…,
and DY as DY;0. The remaining contribution from the
term ~5.19! can be considered to be of a comparable orde
the correlation effect neglected in the factorization appro
mation for the drift term~4.22!, i.e., expanding Eq.~5.18! as

e2pY(h8,Q8;h9,QQ8;t)5e2p[h81h92A(t)1yc]

3@11C1p1C2p21•••#, ~5.20!

with the expansion coefficientsCk[Ck(h8,Q8;h9,QQ8;t)
(k51,2, . . . ), where yc in the prefactor is negligible for
A(t). The terms higher than thep0th order can be regarde
as concerning correlation effects relevant to the nonsca
regionh(yc ,Q;t),h,hc

Q(t).
Discarding the terms obviously breaking the dynami

scaling form, Eq.~5.17! becomes

]

]t
G̃~p,Q;t !1ḣc

Q~ t !e2phc
Q(t)G„hc

Q~ t !,Q;t…

5
1

2

ẏ̄~ t !

ȳ~ t !
epA(t)(

Q8
G̃~p,Q8;t !G̃~p,QQ8;t !.

~5.21!

Since, for p50, Eq. ~5.21! must be consistent with Eq
~4.18!, in which the time scalest and t are connected via
Eqs.~4.17! and ~4.24!, we have
2-11
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G~hc
Q~ t !,Q;t !5Fhc

1ẏ̄

ḣc
1ȳ

G 1

2hc
1~ t !

dQ,15
1

2hc
1~ t !

dQ,1 ,

~5.22!

where the prefactor in the second expression is assume
quickly saturate to 1. With the scale transformations,

hc
1p5s, ] tt5

ḣc
1

2hc
1

, G̃~p,Q;t !5g̃~hc
1p,Q;t!,

~5.23!

Eq. ~5.21! is rewritten as

]

]t
g̃~s,Q;t!12s

]

]s
g̃~s,Q;t!1e2sdQ,1

5ebs(
Q8

g̃~s,Q8;t!g̃~s,QQ8;t!, ~5.24!

where the parameterb is defined with the limitA/hc
1→b

(.0), or hc
1;a/byD(t), for larget.

To examine whether Eq.~5.24! has a scaling solution, le
us see the behavior of the moment hierarchical equat
defined for the coefficients of the expansiong̃(s,Q;t)
5(n50

` Mn
Qsn, where Mn

Q[(21)n^@h/hc
1(t)#n&Q /n! con-

cerns thenth moment of scaled domain sizeh/hc
1(t). M0

Q

[M0
Q(t) is the normalization factor already obtained

M0
Q5 f (Q;t) at Eq. ~4.19!. The equations for the first mo

ment M1
Q are obtained for thes1-order expansion of Eq

~5.24!. The calculation ofM1
Q is shown in Appendix B. From

the result in Appendix B, it is found thatM1
Q;(11b)t/2 for

larget. Therefore, the first moment, i.e., the mean of sca
domain size

^h/hc
1~ t !&Q52M1

Q;2
11b

2
t ~5.25!

diverges to2` because ofb.0. The restrictionb.0 origi-
nates from the direction of the mean field forceV(y,1;t)
always being negative. This result is inconsistent with
dynamical scaling assumption, which requires^h/hc

1(t)&Q to
be constant, hence, we can conclude that the long term
havior of the DSDF cannot be described as a scaling-t
distribution.

B. Correlation effect

The argument in the preceding section suggests that
correlation effect omitted in the factorization approximati
is crucial for the description of the DSDF. Based on this fa
the following treatment makes the joint PDF for two co
secutive domains expand as

f 2~y1 ,Q1 ;y2 ,Q2 ;t !5 f ~y1 ,Q1 ;t ! f ~y2 ,Q2 ;t !

1G2~y1 ,Q1 ;y2 ,Q2 ;t !.

~5.26!
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This progresses the factorization approximation with
function G2(y1 ,Q1 ;y2 ,Q2 ;t) ([G2). The explicit form of
G2 is given in Appendix C by omittingQ variables, there we
introduce the identities extracting the correlation effect fro
the joint PDF for two variables based on the characteri
function theory. Corresponding to Eq.~C11! in Appendix C,
G2 is written as

G25
]2

]y1]y2
E

yc

`

d$y18 ,y28%C2~y12y18 ,Q1 ;y22y28 ,Q2 ;t !

3 f ~y18 ,Q1 ;t ! f ~y28 ,Q2 ;t !, ~5.27!

whereC2(Y1 ,Q1 ;Y2 ,Q2 ;t)([C2) corresponds to Eq.~C12!
in Appendix C. And according to Eq.~C15! in Appendix C,
C2 satisfies the sum rule

E
0

`

d$Y1 ,Y2%C~Y1 ,Q1 ;Y2 ,Q2 ;t !

5^y1y2&Q1 ,Q2
2^y1&Q1 ,Q2

^y2&Q1 ,Q2

[DQ1 ,Q2
~ t !, ~5.28!

where^•••&Q1 ,Q2
denotes the integral

^•••&Q1 ,Q2
[E

2`

`

d$y1 ,y2% f 2~y1 ,Q1 ;y2 ,Q2 ;t !~••• !,

~5.29!

namely, the quantityDQ1 ,Q2
(t) is the covariance that char

acterizes the correlation between neighboring domains th
twistness is specified by$Q1 ,Q2%.

So far, Eq.~5.26! and the associated equations are noth
but the rewriting of the original two-body PDF, for furthe
development, other independent information forC2 is
needed. In the present analysis, we assume that the fun
C2(Y1 ,Q1 ;Y2 ,Q2 ;t) quickly decays for largeY1,2(.0),
which satisfies the sum rule~5.28!, and meets the form o
Eq. ~C13!. Then, as an extreme case of such a function,
apply

C2.DQ1 ,Q2
~ t !d~Y12e!d~Y22e!u~Y1!u~Y2!,

~5.30!

wheree is a small positive number, for which we will tak
the limit e→10. Although there are other choices ofC2,
e.g.,

C2.
DQ1 ,Q2

~ t !

DQ1
DQ2

e2Y1 /DQ1
2Y2 /DQ2u~Y1!u~Y2!, ~5.31!

with finite widths, DQ1
and DQ2

, though we will not use

them here.C2 given by Eq.~5.30! is the most simplified
treatment taking the correlation into account.

Substituting Eq.~5.30! to Eq. ~5.27!, we obtain
2-12
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G25DQ1 ,Q2
~ t !

]2

]y1]y2
u~y12yc2e!u~y22yc2e!

3 f ~y1 ,Q1! f ~y2 ,Q2!. ~5.32!

Then the probability density flux~4.22! is replaced with

J1~y,Q;t !5V~y,Q;t ! f ~y,Q;t !2nQ~ t !
]

]y
f ~y,Q;t !,

~5.33!

where

nQ~ t ![2(
Q8

E
yc

`

dy8DQ,Q8~ t !Q8e2y8 f ~y8,Q8;t !.

~5.34!

At the appropriate step in the calculation to Eq.~5.33!, we
have taken the limite→10.

If the coefficient~5.34! does not take a well defined valu
our approximation will be meaningless, or if it takes negat
value, it may indicate the need of more higher order m
ments. Figure 9 shows the temporal change of the correla
coefficient

RQ1 ,Q2
[

^y1y2&Q1 ,Q2
2^y1&Q1 ,Q2

^y2&Q1 ,Q2

A^dy1
2&Q1 ,Q2

^dy2
2&Q1 ,Q2

5
DQ1 ,Q2

~ t !

^dy1
2&Q1 ,Q2

,

~5.35!

where dy1,2[y1,22^y1,2&Q1Q2
. In the figure the quantity

R21,21 exhibits a well defined behavior, i.e., it smooth
changes and saturates to a constant value within the r
0.10–0.12. However, the data points forR1,1 andR1,21 ex-
hibit a scatter behavior, the vibration around the zero a
The main cause of the scatter behavior is considered to
finite size effect because of the monotonic decreasing of
number of domains. From these results we can regard
quantityR21,21 as positive, and in effect putR1,1 andR1,21
to zero. Although the mean ofR1,1 shows a tendency to shif

FIG. 9. Temporal change of the correlation coefficientsR1,1,
R1,21, and R21,21. The vertical and horizontal axes indicate th

value ofRQ1 ,Q2
and the mean domain sizeȳ(t), respectively. The

correspondence between each ofRQ1 ,Q2
and kind of symbol is in-

dicated within the figure.
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to the positive side, we ignore it; that is considered to be
second effect propagated from the original correlation am
negative-Q pairs of domains. This observation leads to

nQ~ t !.H 0 ~Q51!

E
yc

`

dy8D21,21~ t !e2y8 f ~y8,21;t ! ~Q521!.

~5.36!

Substituting Eqs.~5.33! and~5.36! into Eq.~4.21!, we get

]

]t
f 1~y,1;t !.2

]

]y
V~y,1;t ! f 1~y,1;t !1K1~y,1;t !,

~5.37!

]

]t
f 1~y,21;t !.2

]

]y FV~y,21;t !2n21~ t !
]

]yG f 1~y,21;t !

1K1~y,21;t !. ~5.38!

In a similar sense to the expression~3.5! in Sec. III, we
anticipate the DSDF to be written in the form

f 1~y,Q;t !5 f ,~y,Q;t !1g~y;t !1~ interference terms!,

where f ,(y,Q;t) and g(y;t) corresponds to the DSDF fo
the small and large size region, and the interference te
consist of various combinations of them.

As shown in the numerical simulation, the single-leng
scale behavior is described as a solitonlike motion. Now, t
behavior corresponds to the term off ,(y,21;t), namely,
f ,(y,21;t) has a sharp peak around the sizey
5yd(t) @;yD(t)#, which corresponds to the average size
the clusters that consist of domain sizes dispersed in a
row range around that size. Hence the dynamics of the DS
will be reduced to the dynamics limited in the narrow rang
and we focus our attention to the behavior off ,(y,21;t).
The dispersion of domain sizes can be regarded as the r
of the annihilation of domains, i.e., the role of the annihi
tion is nothing but to prevents all domain sizes from bei
condensed into one domain sizeyd(t) together with driving
the domain size growth. We can expect that the DSDF
Q51 is slaved tof ,(y,21;t) around the regiony;yd(t) as
discussed in Sec. III.

From the numerical results, we postulatef 1(y,21;t) can
be written as

f 1~y,21;t !.H~ t !h„y2yD~ t !;t…, ~5.39!

with a quasistationary functionh, where the coefficientH(t)
can be regarded as the order parameter reflecting the br
symmetry of chirality^Q&Þ0. Figure 5~a! shows thatH(t)
grows fromH(0).0 and saturates to a constant value, a
suggests thatH(t) can be expressed in terms off (21;t)
2 f (1;t)52^Q&.

Substituting Eq.~5.39! into Eq. ~5.38!, we get
2-13
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]

]s
h~z;s!.2

]

]z H @e2z2a~s!#2b~s!
]

]zJ h~z;s!

1DK1~z,21;t !u t5t(s) , ~5.40!

wherez[y2yD(t) and the new time variables is introduced
with the transformationṡ52e2yD(t). The coefficients and the
term DK1(z,21;t)([DK1) in Eq. ~5.40! are defined as

a~s!511
1

2
eyD(t)ẏD~ t !U

t5t(s)

, ~5.41!

b~s!5
1

2
n21~ t !eyD(t)U

t5t(s)

, ~5.42!

DK152
eyD(t)

2H~ t !
$Ḣ~ t !h~z;t !2K1@z1yD~ t !,21;t#%.

~5.43!

For a(s), b(s), andDK1, we estimate their time depen
dency as follows. Fora(s), from the numerical resultyd(t)
; ln t @this also impliesyD(t); ln t], it can be regarded to be
a constant for a sufficiently larget. Next, from the require-
ment for h(z;s) being quasistationary, we should choo
H(t) so as to satisfy*yc

` dyDK1;0. By using Eqs.~4.23!

and ~4.24!, this makes Ḣ(t); f (21;t) f (1;t) ẏ̄(t)/ ȳ(t),
thereby we findH(t)}@ f (21;t)2 f (1;t)# with Eq. ~4.18!
@note that H(t)} f (21;t) for a sufficiently large t and
H(0);0 is the desired initial condition forH(t)]. The order

estimation of Eq.~5.43! gives DK1;eyD(t) f (1;t) ẏ̄(t)/ ȳ(t).

This leads toDK1; ȳ(t)22 by means ofẏ̄(t);e2yD(t) and
f 1„1;ȳ(t)…; ȳ(t)21 @see Eq.~4.25!#. Accordingly, hereafter,
we drop the termDK1 from Eq. ~5.40!, since it becomes
negligible in comparison with the other terms in the ord
unity. The remaining parameterb(s) is written as

FIG. 10. The temporal change of the covarianceD21,21
n (t) (n

52, . . . ,10) isdefined by Eq.~5.45!. The vertical and horizonta
axes, respectively, indicate the value ofD21,21

n (t) and the mean

domain sizeȳ(t). The correspondence between each numbern and
the kind of symbol is indicated within the figure.
03611
r

b~s!.
H„t~s!…

2
D21,21„t~s!…E

2yD„t(s)…

`

dz8e2z8h~z8;s!,

~5.44!

from Eqs.~5.42! and~5.36!. The factorH(t) and the integral
value of the last factor, respectively, saturate to certain c
stant values with an order unity for largeyD(t). In the
present approach, asD21,21(t) can not be explicitly ex-
pressed with known quantities, we then estimate the t
dependency ofD21,21(t) numerically as in the following
paragraph.

Figure 10 shows the temporal behavior of the quantity

D21,21
n ~ t ![^y1y2&$21, . . . ,21%n

2^y1&$21, . . . ,21%n^y2&$21, . . . ,21%n,

~5.45!

for n52, . . .,10, where ^•••&$21, . . . ,21%n is the average
taken over the ensembles ofn-consecutive domains whos
twistness are allQ521, and in which the neighboring do
mains numbered as 1 and 2 are located at the center o
array. In particular, the casen52 is identical toD21,21(t).
It is found thatD21,21

n (t) increases in the course of tim
over alln, and its magnitude for largern takes smaller values
at the same time. Here, it is important that asn is large the
temporal behavior ofD21,21

n (t) indicates a tendency to satu
rate to a constant value@althoughD21,21

2 (t) does not clearly
reach a constant value,D21,21

10 (t) though clearly reaches#.
This agrees with an observation that the quantityD21,21

n (t)
for a largen extracts the correlation between neighbori
domain sizes inside of clusters in which domain sizes
ordered with sizes aroundyd(y), while D21,21

n (t) for
smallern is more influenced by the disordered domain siz
outside of the clusters. From this observation, we assu
that D21,21(t) consists of two parts asD21,21(t)5D21,21

`

1dD21,21(t) with the constant partD21,21
` , the contribu-

tion from the ordered domain sizes, anddD21,21(t) dimin-
ishing in the course of time, the contribution from the diso
dered ones. According to this decomposition, we also ass
h„y2yD(t);t… to be separable as

h„y2yD~ t !;t…5h„y2yD~ t !…`1dh„y2yD~ t !;t…,
~5.46!

where the shape of the former function is stationary and
latter temporally diminishes. Similarly, from Eq.~5.44! and
these assumptions, the coefficientb(s) is also decomposed
into a constantb` and another temporally diminishing pa
db(s) as b(s)5b`1db(s). Substituting the expansion fo
b(s) and Eq.~5.46! into Eq. ~5.40!, and collecting only the
stationary terms, we get

]

]s
h~z;s!.2

]

]z F ~e2z2a`!2b`
]

]zGh~z;s!, ~5.47!

wherea` is the constant part ofa(s) in the limit s→`. It is
expected that the remaining temporally varying terms
comparable with the reaction termDK1. The form of Eq.
2-14
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~5.47! is the Fokker-Planck equation with an exponentia
decaying potential. The stationary solution of Eq.~5.47! is
given by

h`~z!.C exp@2$a`z1exp~2z!%/b`#, ~5.48!

where C is a constant. More advanced treatment of E
~5.47! is found in Ref.@21#.

Figure 11 shows a comparison between the numerical
and the typical shape of Eq.~5.48!, 0.20 exp@20.50z
20.18 exp(2z)#, whose parameters were obtained with
nonlinear curve fitting to the data fort56.731012. The dif-
ference between both results is relatively large for the reg
z.0.

One reason why the difference arises is that there is n
stationary behavior in the numerical data, which has b
eliminated in the analytical result. Another cause may lie
the truncation of higher order moments concerning the c

FIG. 11. Typical shape of Eq.~5.48! ~solid line! and the numeri-
cal data forf (y,21;t) whose peak position is shifted to the origi
The parameters in Eq.~5.48! are chosen as 0.20 exp@20.50z
20.18 exp(2z)#.

FIG. 12. Typical behaviors of the mean field potentia
UB(y,Q;t) @Q51 (21) correspond to broken~doubly dotted bro-
ken! line# andUI(y;t) ~solid line!. The vertical and horizontal axe
indicate the values of the potentials~arbitrary unit! and y, respec-
tively. For all these functions,yD(t) is set to be 6.0.
03611
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relation effect in the derivation of Eq.~5.33!, since the more
detailed shape of the DSDF is considered to be sensitiv
higher order moments.

VI. DISCUSSION

In this section, we discuss the difference in the dom
growth behaviors between the Ne´el and Bloch wall situa-
tions. Except for the detailed shape of the DSDF, the ch
acteristics of the DSDF in the Bloch wall situation lie in th
structure of the mean field forceV(y,Q;t) as defined by Eq.
~5.4!. In the Néel wall situation, from Eq.~1.3!, the mean
field force is obtained as

ẏ52e2yD(t)22e2y[VI~y!. ~6.1!

We can also define the potential functions from the fo
fields Eqs.~5.4! and~6.1! by integrating them on the variabl
y, i.e.,

UB~y,Q;t !52e2yD(t)y22Qe2y, ~6.2!

UI~y;t !522e2yD(t)y22e2y, ~6.3!

for the Bloch (UB) and Néel (UI) wall situations, respec-
tively. The typical behaviors of these functions are shown
Fig. 12. The potentialUB(y,21;t) has a minimum aty
5yD(t), and UB(y,1;t) has an attractive point at the cuto
sizey5yc , where domain sizes collapse. It is clear that t
structure eventually brings the condensation of domain s
aroundy5yD(t). On the other hand, the potentialUI(y;t)
has a repulsive point aty5yD(t), where domain sizes fo
y,yD(t) diminish and collapse aty5yc , and that fory
.yD(t) grows, whiley.yD(t) holds. In the analysis with
the scaling hypothesis in Sec. V A, at Eq.~5.25!, we have
shown that the mean scaled domain size does not take
fixed value but diverges toward a negative infinity. This b
havior is implied from the form ofUB(y,Q;t) for y
@yD(t), i.e., UB(y,Q;t);2e2yD(t)y, by which domain
sizes always flow out of the regiony@yD(t), which was
assumed to be scaling region in the analysis of Sec. V A.
the Néel wall situation, the DSDF obeys the scaling-typ
distribution. While the dynamical scaling structure is dev
oped by the annihilation process, the stability of the scal
behavior is supported by the potential structureUI(y;t). This
is intuitively explained by using Eq.~6.1!: the equation of
motion for the scaled domain sizeY5y/yD(t), being written
as

Ẏ52
ẏD~ t !

yD~ t !
Y1

2

yD~ t !
@e2yD(t)2e2yD(t)Y#, ~6.4!

has a stable fixed point depending on the form ofẏD(t) @it is
reasonable to beẏD(t)}e2yD(t)] ; this retains the scaling
property of the DSDF at the edge of the scaling region. T
discussion is similar to the argument by Lifshitz, Slyozo
and Wagner@4,5# for the scaling solution for droplet siz
distribution in a binary mixture system, and also sugge
that we can classify whether DSDFs obey scaling beha

,

2-15
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or solitonlike behavior by a mean field force~or potential!
like used here in 1D domain coarsening systems.

Finally, let us discuss the self-consistency of the obtain
DSDF for solitonlike behavior. The characteristic sizeyD(t)
was defined bŷ Qe2y&52e2yD(t) and this relation should
be held with the DSDFf (y,Q;t). To know the average
^Qe2y& needs information for the entire DSDF or all th
momentŝ yk&Q (k51,2, . . . ) forQ561. However, due to
approximation procedures, our resulth(z) does not have
enough accuracy to calculate such higher order mome
hence, the above-mentioned relation is not useful. Instead
us consider the conditional second-order moment of dom
size as defined bŷdy2&21,21, which is also approximated a

E
yc

`

dy f~21;t ! f ~y,21;t !~y2^y&!2

.E
yc

`

dyh`
„y2yD~ t !…~y2^y&!2. ~6.5!

Here, we use the saddle point approximation forh`(z), i.e.,
the saddle point for Eq.~5.48! is given asz* 52 ln a`, and
aroundz5z*

h`~z!}h`~z* !expS 2
a`

2b`
dz2D , ~6.6!

with dz5z2z* . This leads to^y&21,21.yD(t)1z* and
^dy2&21,21.^dz2&21,21.a`/b`. From the relations~5.35!,
~5.36!, ~5.41!, and~5.42!, we havea`.11eyD(t)ẏD(t)/2 and
b`/^dy2&21,21.R21,21^e

2z&21/2 for sufficiently large t
@a(s).a`, b(s).b`]. In terms of yD(t) and R21,21, the
relation ^y&21,21.a`/b` reads

ẏD~ t !.~R21,21^e
2z&2122!e2yD(t). ~6.7!

This proposes a qualitative self-consistent condition for
solitonlike bahavior, namely, the growth ofyD(t) requires
the conditionR21,21^e

2z&21.2. Hence, it turns out that th
correlation coefficientR21,21 must be positive, and the
DSDF for Q521 has to be sufficiently asymmetric for th
inversion z→2z. The former signifies that the solitonlik
behavior is inevitably connected to the nonvanishing co
lation coefficient, and that the latter can be read as the as
metry coming from the unidirectional motion of the solito
like behavior.

VII. SUMMARY

We discussed the dynamics of the domain size distri
tion in the 1D anisotropicXY-spin model, and provided an
other scenario of an ordering process. First, we showed
role of the repulsive interaction in the domain wall dyna
ics. It turned out that the repulsive interaction betwe
neighboring walls brings about the formation of clusters a
the condensation of domain sizes around one characte
size. While the role of the attractive one is to drive the coa
ening process accompanied by the annihilation of domai

Next, we discussed the dynamics of DSDF based on
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numerical results obtained from Eq.~2.5!. Although the
growth law for the mean domain size possesses the s
logarithmic growth law as obtained for the Ne´el wall situa-
tion, the DSDF exhibits a quite different behavior from th
Néel wall case. The DSDF can be characterized by soliti
like translational motion, in which the peak position of th
DSDF grows logarithmically but its shape does not
change.

With the help of numerical results, we theoretically an
lyzed the DSDF in the Bloch case based on a kinetic eq
tion for domain sizes. The probability function for the rea
ization of a specified twistness arrangement
n-consecutive domains was obtained, and it agreed well w
the numerically obtained result. The DSDF for a single d
main was studied in two steps. First, assuming a scaling f
for the DSDF, we proved that it is not described as t
scaling-type distribution function. Next, incorporating th
correlation effect between neighboring domain sizes, we
tained a qualitative Fokker-Planck equation and its solut
describing the solitonlike behavior.

Finally, we discussed the difference between the Ne´el and
Bloch walls systems. This argument suggests that the st
ture of a mean field potential classifies the long term beh
ior of the DSDF into two types. We also discussed the s
consistent condition for the solitonlike behavior.

In the present study, we have not deal with the therm
noise effect, which may be important for more practical a
plication. This remains for future study.

ACKNOWLEDGMENTS

I would like to thank Professor H. Fujisaka and Dr.
Miyazaki for their help and advice.

APPENDIX A

For the casen>2, the right hand side of Eq.~4.16! can be
divided into one linear term proportional tof n($Q%1

n ;t) and
the other terms, denoted byzn21(t), comprising of the
lower hierarchical probability functions,f k($Q%1

k ;t) (k5n
21, . . . ,1), as

]t f n~$Q%1
n ;t!52D~t! f n~$Q%1

n ;t!1zn21~t!, ~A1!

whereD(t)52@ f 1(21;t)2 f 1(1;t)#52 tanh(t), and

zn21~t!52 (
k51

n

f k21~$Q%1
k21 ;t! f n2k~$Q%k11

n ;t!dQk,1

1 (
k52

n21

(
Q8,Q9

dQk ,Q8Q9 f k~$Q%1
k21 ,Q8;t!

3 f n2k11~Q9,$Q%k11
n ;t!

1 f 1~21;t!@ f n21~$Q%2
n ;t!1 f n21~$Q%1

n21 ;t!#.

~A2!
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The detail of the calculation of Eq.~A2! is shown in the last
paragraph of this appendix. Furthermore, Eq.~A1! can be
written in the integral form

f n~$Q%1
n ;t!5W~t! f n~$Q%1

n ;0!

1W~t!E
0

t

W~t8!21zn21~t8!dt8, ~A3!

whereW(t)5exp@2*0
tD(t8)dt8#51/cosh (t)2. This is the re-

cursion relation connectingnth and (n21)th functions.
Hence, then-body probability function can be inductivel
obtained with the relation Eq.~A3! in order from the prob-
ability function for n51, which is given by Eq.~4.19!. The
result after carrying out this procedure becomes Eq.~4.20!
for the symmetric initial conditionf n($Q%1

n ;0)51/2n.
The proof is based on the mathematical induction meth

The casen51 @Eq. ~4.19!# accords with Eq.~4.20!. Suppos-
ing Eq. ~4.20! is the form of the lower hierarchical probabi
ity functions up to (n21)th order, and substituting them int
Eq. ~A2!, we obtain

zn21~t!5
2

~et1e2t!n11 F2~n22!sinh~t!

2cosh~t!(
k51

n

QkGexpS 2t(
i 51

n

Qi D . ~A4!

Substituting this andf n($Q%1
n ;0)51/2n into Eq. ~A3!, then

we find f n($Q%1
n ;t) to be of the same form as Eq.~4.20!.

Therefore, it is proved that the form~4.20!, which is obtained
for the symmetric initial configuration, holds for a gener
numbern.

The detail of the calculationof Eq. ~A2!: the first summa-
tion in the right hand side of Eq.~4.16! does not include the
n-body functions but consists of the lower hierarchical fun
tions, thus they are included inzn21(t) as the first summa
tion in Eq. ~A2!. The last summation in Eq.~4.16! can be
divided into then-body function and the others as

(
k51

n

(
Q8,Q9

dQk ,Q8Q9 f k~$Q%1
k21 ,Q8;t! f n2k11~Q9,$Q%k11

n ;t!

5 (
k52

n21

(
Q8,Q9

dQk ,Q8Q9 f k~$Q%1
k21 ,Q8;t!

3 f n2k11~Q9,$Q%k11
n ;t!

1 (
Q8,Q9

dQ1 ,Q8Q9 f 1~Q8;t! f n~Q9,$Q%2
n ;t!

1 (
Q8,Q9

dQn ,Q8Q9 f n~$Q%1
n21 ,Q8;t! f 1~Q9;t!.

The first summation is included inzn21(t) as the second
summation in Eq.~A2!, and the last two summations a
furthermore expanded as
03611
d.

l

-

(
Q8

f 1~Q8;t! f n~Q1Q8,$Q%2
n ;t!

1(
Q8

f n~$Q%1
n21 ,Q8Qn ;t! f 1~Q8;t!

52 f 1~1;t! f n~$Q%1
n ;t!1 f 1~21;t!@ f n~2Q1 ,$Q%2

n ;t!

1 f n~$Q%1
n21 ,2Qn ;t!#

52@ f 1~1;t!2 f 1~21;t!# f n~$Q%1
n ;t!1 f 1~21;t!

3@ f n21~$Q%2
n ;t!1 f n21~$Q%1

n21 ;t!#,

where we have used(Q1
f n(Q1 ,$Q%2

n ;t)5 f n21($Q%2
n ;t) in

the last step. The first term is the first in the right hand s
of Eq. ~A1!, and the second is the last in Eq.~A2!. Hence, all
terms in Eq.~A1! are confirmed.

APPENDIX B

The equations for the first momentM1
Q is

]

]t
M1

15122M0
21~M1

12M1
21!1b@122M0

1M0
21#,

~B1!

]

]t
M1

2152M0
21~M1

12M1
21!12bM0

21M0
1 . ~B2!

Taking the sum and difference from Eqs.~B1! and ~B2!, we
get

]

]t
@M1

11M1
21#511b, ~B3!

]

]t
@M1

12M1
21#511b24M0

21~M1
12M1

21!24bM0
21M0

1 .

~B4!

These yield

M1
11M1

215M1
1~0!1M1

21~0!1~11b!t, ~B5!

M1
12M1

215
4@M1

1~0!2M1
21~0!#

~11e2t!2
1

1

~11e2t!2

3F ~11b!S t1
1

4
e4tD

2
5

4
1

3

4
b1~12b!e2tG , ~B6!

where we have used

E
t8

t

dt9M0
215

1

2
lnF 11e2t

11e2t8G ~B7!
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in the calculation of the second equation. For larget, Eqs.
~B5! and ~B6! behave asM1

11M1
21→(11b)t and M1

1

2M1
21→(11b)/4, respectively.

APPENDIX C

The formula~5.26! and the related equations in Sec. V
are constructed from the characteristic function for two va
ablesy1 andy2,

f̃ 2~q1 ,q2![^e2q1y12q2y2&

[E
yc

`

d$y1 ,y2%e
2q1y12q2y2f 2~y1 ,y2!, ~C1!

where indexes forQ variables are omitted for simplicity, an
the joint PDFf 2(y1 ,y2) is normalized so that its integral i
unity. Let us expand the characteristic functionf̃ 2(q1 ,q2) as

^e2q1y12q2y2&5^e2q1y1&^e2q2y2&

1H̃2~q1 ,q2!^e2q1y1&^e2q2y2&. ~C2!

The functionH̃2(q1 ,q2) involves the correlation effect. With
the cumulant generating functions, which is defined
^e2qiyi&[eC1(qi ) ( i 51,2) and^e2q1y12q2y2&[eC2(q1 ,q2) for
one and two variables, the functionH̃2(q1 ,q2) is rewritten as

H̃2~q1 ,q2!5eC2(q1 ,q2)2C1(q1)2C1(q2)21. ~C3!

Assuming the functionsC1 and C2 are analytic aroundq1
5q250, together with the relations

C2~q1 ,q2!5 lnF11 (
n51

`

(
m50

n
~21!nq1

mq2
n2m

m! ~n2m!!
^y1

my2
n2m&G ,

~C4!

C1(q1)5C2(q1,0) and c1(q2)5C2(0,q2), the function
H̃2(q1 ,q2) is expanded as

H̃2~q1 ,q2!5expS (
n,m51

` q1
nq2

m

n!m!
An,mD 21[ (

n,m51

` q1
nq2

m

n!m!
Bn,m

[q1q2C̃2~q1 ,q2!, ~C5!

where

An,m5
]n1m

]q1
n]q2

m
C2~q1 ,q2!U

q150,q250

, ~C6!

and the coefficientBn,m is determined from the combinatio
of $An,m%. A few particular cases ofBn,m are as follows:

@1# J.D. Gunton, M.S. Miguel, and P.S. Sahni,Phase Transition
and Critical Phenomena~Academic Press, New York, 1983!,
Vol. 8, p. 267.

@2# H. Furukawa, Adv. Phys.34, 703 ~1985!.
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B1,15A1,15C̃2~0,0!5^y1y2&2^y1&^y2&, ~C7!

B1,25A1,252^y1
2y2&1^y1

2&^y2&12^y1y2&^y2&

22^y1&
2^y2&. ~C8!

The function C̃2(q1 ,q2) extracts the correlation effect be
tween two variables. Applying the inverse Laplace transf
mation, which is defined as

f 2~y1 ,y2!5
1

~2p i !2E2 i`

i`

d$q1 ,q2%e
q1y11q2y2 f̃ 2~q1 ,q2!,

~C9!

for Eq. ~C1!, to both sides of Eq.~C2!, we obtain the joint
PDF for y1 andy2 as

f 2~y1 ,y2!5 f 1~y1! f 1~y2!1G2~y1 ,y2!, ~C10!

where f 1(yi) ( i 51,2) is the single-variable PDF an
G2(y1 ,y2) is defined by

G2~y1 ,y2!5
]2

]y1]y2
E

yc

`

d$y18 ,y28%C~y12y18 ,y22y28!

3 f 1~y18! f 1~y28!, ~C11!

with

C~Y1 ,Y2!5
1

~2p i !2E2 i`

i`

d$q1 ,q2%e
q1Y11q2Y2C̃~q1 ,q2!.

~C12!

Here, f 2(y1 ,y2) must satisfy the condition
*yc

` dy2f 2(y1 ,y2)5 f 1(y1), and from Eq.~C10! this leads to

*yc

` dy2G2(y1 ,y2)50. From the integration of Eq.~C11! on

one of the two variables, we can find that such a relation
held by the function form

C~Y1 ,Y2!5C8~Y1 ,Y2!u~Y1!u~Y2!, ~C13!

by introducing a functionC8(Y1 ,Y2). Supposing this form
for C(Y1 ,Y2), via the Laplace transformation of Eq.~C12!,
we have

C̃~q1 ,q2!5E
0

`

d$Y1 ,Y2%e
2q1Y12q2Y2C~Y1 ,Y2!.

~C14!

Puttingq15q250, this provides the useful sum rule

C̃~0,0!5^y1y2&2^y1&^y2&5E
0

`

d$Y1 ,Y2%C~Y1 ,Y2!.

~C15!
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